AzureMLでfitdistrplusを使った確率分布の推定

ここでは確率分布の種類は既知のものとして、データから確率分布のパラメータの推定を行う過程を紹介する。Azure MLでは当該機能は機能セットとしては提供していないため、Rで実装されているfitdistrplusを用いて行う。
サンプルデータとしてパラメータが既知の分布を基づいて乱数を生成し、その乱数をデータとしてパラメータの推定を行う。この場合のML StudioでのExperimentを下記図に示す。

Experiment for Estimation Parameters

Experiment for Estimation Parameters

Figure 1は2つのRスクリプトで構成されている。このスクリプトを下記Source 1およびSource 2に示す。Source 1はサンプルデータの生成を行うスクリプトで、Source 2がデータに基づき分布の推定を行うスクリプトである。

maml.mapOutputPortおよび、maml.mapInputPortはAzure MLのRにおける固有の関数でデータの受け渡しを行う関数である。アウトプットされたグラフィックスは既定で特定の割り当てがなされるので特に実装を行わなくてもPNGフォーマットで取得することができる。出力結果を以下のEstimate Resultに示す。

# Create Data Set
data.set
Source 1: Data Generate
# Load required packages
library(fitdistrplus)

# load data frame
data.set
Source 2: Parameter Estimation
Estimate Result

Estimate Result


コメントを残す